Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
1.
NPJ Digit Med ; 7(1): 122, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729977

ABSTRACT

Sleep disturbances profoundly affect the quality of life in individuals with neurological disorders. Closed-loop deep brain stimulation (DBS) holds promise for alleviating sleep symptoms, however, this technique necessitates automated sleep stage decoding from intracranial signals. We leveraged overnight data from 121 patients with movement disorders (Parkinson's disease, Essential Tremor, Dystonia, Essential Tremor, Huntington's disease, and Tourette's syndrome) in whom synchronized polysomnograms and basal ganglia local field potentials were recorded, to develop a generalized, multi-class, sleep specific decoder - BGOOSE. This generalized model achieved 85% average accuracy across patients and across disease conditions, even in the presence of recordings from different basal ganglia targets. Furthermore, we also investigated the role of electrocorticography on decoding performances and proposed an optimal decoding map, which was shown to facilitate channel selection for optimal model performances. BGOOSE emerges as a powerful tool for generalized sleep decoding, offering exciting potentials for the precision stimulation delivery of DBS and better management of sleep disturbances in movement disorders.

2.
Article in English | MEDLINE | ID: mdl-38641368

ABSTRACT

BACKGROUND: Rapid eye movement (REM) sleep behaviour disorder (RBD) is one of the most common sleep problems and represents a key prodromal marker in Parkinson's disease (PD). It remains unclear whether and how basal ganglia nuclei, structures that are directly involved in the pathology of PD, are implicated in the occurrence of RBD. METHOD: Here, in parallel with whole-night video polysomnography, we recorded local field potentials from two major basal ganglia structures, the globus pallidus internus and subthalamic nucleus, in two cohorts of patients with PD who had varied severity of RBD. Basal ganglia oscillatory patterns during RBD and REM sleep without atonia were analysed and compared with another age-matched cohort of patients with dystonia that served as controls. RESULTS: We found that beta power in both basal ganglia nuclei was specifically elevated during REM sleep without atonia in patients with PD, but not in dystonia. Basal ganglia beta power during REM sleep positively correlated with the extent of atonia loss, with beta elevation preceding the activation of chin electromyogram activities by ~200 ms. The connectivity between basal ganglia beta power and chin muscular activities during REM sleep was significantly correlated with the clinical severity of RBD in PD. CONCLUSIONS: These findings support that basal ganglia activities are associated with if not directly contribute to the occurrence of RBD in PD. Our study expands the understanding of the role basal ganglia played in RBD and may foster improved therapies for RBD by interrupting the basal ganglia-muscular communication during REM sleep in PD.

3.
Langmuir ; 40(19): 9911-9925, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38688881

ABSTRACT

Groundwater infiltration into tunnels causes water to percolate through the fissure channels in the initial support shotcrete. This results in the dissolution and outflow of calcium hydroxide, a key product of cement hydration. This process significantly incurs the formation of crystallization blockages in the tunnel drainage systems. Optimizing the shotcrete mixing ratio is a feasible way to mitigate these blockages. Therefore, this study conducts calcium dissolution tests to investigate the impact of six admixtures, namely, antialkali agent, nanosilica, nanosilica carbonate, fly ash, sodium methyl silicate waterproofing agents, and silane waterproofing agents, on calcium dissolution resistance. Also, mechanical and microscopic tests are carried out to examine their impact on the strength and pore structure of the shotcrete. The objective of this study is to determine the optimal admixture for enhancing the calcium dissolution resistance of shotcrete. Results indicate that the antialkali agent significantly reduces the calcium leaching content of shotcrete. When the dosage is 14%, the calcium leaching amount is reduced by 68.4% in 28 days. Followed by nanosilica and silane waterproofing agents, with optimal dosages of 12 and 0.4%, respectively, the dissolution amount of calcium ions in shotcrete was reduced by 32.87 and 26.5%, respectively. Fly ash curing for 28 days can also reduce the calcium ion dissolution of shotcrete, while nanocalcium carbonate and sodium methyl silicate have little effect on the calcium dissolution of shotcrete. The antialkali agent with a strong calcium ion dissolution effect can improve the tensile strength of shotcrete under long-term curing conditions, which can be increased by 52%, but it compromises the growth of compressive strength. Nanosilica, fly ash, and silane waterproofing agents can improve both the compressive strength and tensile strength of shotcrete under long-term curing conditions. Specifically, at 28 days of curing, the compressive strength increased by 16.83, 28.8, and 20% and the tensile strength increased by 50.24, 60, and 64.5%. In addition, the microscopy results show that the antialkali agent, nanosilica, and silane waterproofing agents promote the hydration process of cement to form ettringite with a low and stable calcium-silicon ratio and reduce calcium hydroxide crystals. Nanosilica and silane waterproofing agents optimize the pore distribution in shotcrete by increasing beneficial pores, decreasing harmful pores, and reducing total porosity.

4.
Asian J Psychiatr ; 94: 103960, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368692

ABSTRACT

OBJECTIVES: To evaluate the efficacy and safety of combined deep brain stimulation (DBS) with capsulotomy for comorbid motor and psychiatric symptoms in patients with Tourette's syndrome (TS). METHODS: This retrospective cohort study consecutively enrolled TS patients with comorbid motor and psychiatric symptoms who were treated with combined DBS and anterior capsulotomy at our center. Longitudinal motor, psychiatric, and cognitive outcomes and quality of life were assessed. In addition, a systematic review and meta-analysis were performed to summarize the current experience with the available evidence. RESULTS: In total, 5 eligible patients in our cohort and 26 summarized patients in 6 cohorts were included. After a mean 18-month follow-up, our cohort reported that motor symptoms significantly improved by 62.4 % (P = 0.005); psychiatric symptoms of obsessive-compulsive disorder (OCD) and anxiety significantly improved by 87.7 % (P < 0.001) and 78.4 % (P = 0.009); quality of life significantly improved by 61.9 % (P = 0.011); and no significant difference was found in cognitive function (all P > 0.05). Combined surgery resulted in greater improvements in psychiatric outcomes and quality of life than DBS alone. The synthesized findings suggested significant improvements in tics (MD: 57.92, 95 % CI: 41.28-74.56, P < 0.001), OCD (MD: 21.91, 95 % CI: 18.67-25.15, P < 0.001), depression (MD: 18.32, 95 % CI: 13.26-23.38, P < 0.001), anxiety (MD: 13.83, 95 % CI: 11.90-15.76, P < 0.001), and quality of life (MD: 48.22, 95 % CI: 43.68-52.77, P < 0.001). Individual analysis revealed that the pooled treatment effects on motor symptoms, psychiatric symptoms, and quality of life were 78.6 %, 84.5-87.9 %, and 83.0 %, respectively. The overall pooled rate of adverse events was 50.0 %, and all of these adverse events were resolved or alleviated with favorable outcomes. CONCLUSIONS: Combined DBS with capsulotomy is effective for relieving motor and psychiatric symptoms in TS patients, and its safety is acceptable. However, the optimal candidate should be considered, and additional experience is still necessary.


Subject(s)
Deep Brain Stimulation , Obsessive-Compulsive Disorder , Tourette Syndrome , Humans , Tourette Syndrome/complications , Tourette Syndrome/surgery , Deep Brain Stimulation/adverse effects , Deep Brain Stimulation/methods , Quality of Life , Retrospective Studies , Obsessive-Compulsive Disorder/complications , Obsessive-Compulsive Disorder/therapy , Obsessive-Compulsive Disorder/diagnosis
5.
Comput Biol Med ; 170: 108045, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325213

ABSTRACT

A semi-analytical solution to the unified Boltzmann equation is constructed to exactly describe the scatter distribution on a flat-panel detector for high-quality conebeam CT (CBCT) imaging. The solver consists of three parts, including the phase space distribution estimator, the effective source constructor and the detector signal extractor. Instead of the tedious Monte Carlo solution, the derived Boltzmann equation solver achieves ultrafast computational capability for scatter signal estimation by combining direct analytical derivation and time-efficient one-dimensional numerical integration over the trajectory along each momentum of the photon phase space distribution. The execution of scatter estimation using the proposed ultrafast Boltzmann equation solver (UBES) for a single projection is finalized in around 0.4 seconds. We compare the performance of the proposed method with the state-of-the-art schemes, including a time-expensive Monte Carlo (MC) method and a conventional kernel-based algorithm using the same dataset, which is acquired from the CBCT scans of a head phantom and an abdominal patient. The evaluation results demonstrate that the proposed UBES method achieves comparable correction accuracy compared with the MC method, while exhibits significant improvements in image quality over learning and kernel-based methods. With the advantages of MC equivalent quality and superfast computational efficiency, the UBES method has the potential to become a standard solution to scatter correction in high-quality CBCT reconstruction.


Subject(s)
Cone-Beam Computed Tomography , Image Processing, Computer-Assisted , Humans , Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Scattering, Radiation , Tomography, X-Ray Computed , Algorithms , Phantoms, Imaging , Monte Carlo Method
6.
JMIR Res Protoc ; 12: e52447, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38133909

ABSTRACT

BACKGROUND: Although results from in vitro studies and small randomized controlled trials have shown positive effects of Dazhu hongjingtian injection (DZHJTI) on acute ischemic stroke (AIS), their generalizability to routine clinical practice remains to be established. OBJECTIVE: The primary aim of this study is to evaluate the effectiveness of DZHJTI treatment for AIS with regard to changes in the stroke-related neurological deficit from baseline to outpatient follow-up, mortality, subsequent vascular events, disability, and traditional Chinese medicine syndrome in real-world clinical settings. By monitoring for adverse events or significant changes in vital signs and laboratory parameters, we also aim to assess the safety of DZHJTI. METHODS: This prospective, multicenter cohort study plans to enroll 2000 patients with AIS within 14 days of symptom onset from 30 hospitals across China. Eligible patients will be followed up for 6 months after initiating medication treatments. The primary outcome will be the change in the National Institute of Health Stroke Scale score from baseline to outpatient follow-up. The secondary outcomes include overall mortality, stroke recurrence, new-onset major vascular events, global disability, and improvement of traditional Chinese medicine syndrome in 6 months. Adverse events or clinically significant changes in vital signs and laboratory parameters, regardless of the severity, will be recorded during the trial to assess the safety of DZHJTI. An augmented inverse propensity weighted estimator will be used to reduce variability and improve accuracy in average treatment effects estimation. RESULTS: The clinical trial registration was approved in October 2022, and the recruitment and enrollment of participants started in November 2022. The study's outcomes are expected to be published in 2025 in reputable, peer-reviewed health-related research journals. CONCLUSIONS: This real-world cohort study is the first to assess the effectiveness and safety of DZHJTI in treating AIS. It may provide additional clinical evidence, including the duration of response, long-term drug effectiveness, and subgroup efficacy data. The study results will be valuable for clinicians and patients seeking optimal treatment for AIS and could lead to better use of DZHJTI and improved patient outcomes. TRIAL REGISTRATION: ITMCTR ITMCTR2022000005; http://tinyurl.com/554ns8m5. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/52447.

7.
Chem Commun (Camb) ; 59(92): 13703-13706, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37905349

ABSTRACT

This study explored FL-H2S, a novel fluorescein-based H2S donor, as an anti-inflammatory agent. The results demonstrated the efficient release of H2S by FL-H2S, along with its biocompatibility, real-time intracellular H2S release and imaging capability. In vivo experiments using a rat model confirmed the anti-inflammatory effects of FL-H2S, evidenced by reduced foot swelling. We also successfully elucidated the anti-inflammatory mechanism through ELISA and WB analysis.


Subject(s)
Hydrogen Sulfide , Rats , Animals , Hydrogen Sulfide/pharmacology , Anti-Inflammatory Agents/pharmacology , Optical Imaging
8.
Mil Med Res ; 10(1): 45, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37752599

ABSTRACT

Integrated traditional Chinese medicine (TCM) and Western medicine (WM) is a new medical science grounded in the knowledge bases of both TCM and WM, which then forms a unique modern medical system in China. Integrated TCM and WM has a long history in China, and has made important achievements in the process of clinical diagnosis and treatment. However, the methodological defects in currently published clinical practice guidelines limit its development. The organic integration of TCM and WM is a deeper integration of TCM and WM. To realize the progression of "integration" to "organic integration", a targeted and standardized guideline development methodology is needed. Therefore, the purpose of this study is to establish a standardized development procedure for clinical practice guidelines for the organic integration of TCM and WM to promote the systematic integration of TCM and WM research results into clinical practice guidelines in order to achieve optimal results as the whole is greater than the sum of the parts.


Subject(s)
Medicine, Chinese Traditional , Practice Guidelines as Topic , Humans , China
9.
Nat Commun ; 14(1): 5434, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37669927

ABSTRACT

Parkinson's disease (PD) is associated with excessive beta activity in the basal ganglia. Brain sensing implants aim to leverage this biomarker for demand-dependent adaptive stimulation. Sleep disturbance is among the most common non-motor symptoms in PD, but its relationship with beta activity is unknown. To investigate the clinical potential of beta activity as a biomarker for sleep quality in PD, we recorded pallidal local field potentials during polysomnography in PD patients off dopaminergic medication and compared the results to dystonia patients. PD patients exhibited sustained and elevated beta activity across wakefulness, rapid eye movement (REM), and non-REM sleep, which was correlated with sleep disturbance. Simulation of adaptive stimulation revealed that sleep-related beta activity changes remain unaccounted for by current algorithms, with potential negative outcomes in sleep quality and overall quality of life for patients.


Subject(s)
Parkinson Disease , Sleep Wake Disorders , Humans , Quality of Life , Sleep , Globus Pallidus , Basal Ganglia
10.
Front Neurosci ; 17: 1228711, 2023.
Article in English | MEDLINE | ID: mdl-37712094

ABSTRACT

Postural instability/gait disturbance (PIGD) is very common in advanced Parkinson's disease, and associated with cognitive dysfunction. Research suggests that low frequency (5-12 Hz) subthalamic nucleus-deep brain stimulation (STN-DBS) could improve cognition in patients with Parkinson's disease (PD). However, the clinical effectiveness of low frequency stimulation in PIGD patients has not been explored. This study was designed in a double-blinded randomized cross-over manner, aimed to verify the effect of low frequency STN-DBS on cognition of PIGD patients. Twenty-nine PIGD patients with STN-DBS were tested for cognitive at off (no stimulation), low frequency (5 Hz), and high frequency (130 Hz) stimulation. Neuropsychological tests included the Stroop Color-Word Test (SCWT), Verbal fluency test, Symbol Digital Switch Test, Digital Span Test, and Benton Judgment of Line Orientation test. For conflict resolution of executive function, low frequency stimulation significantly decreased the completion time of SCWT-C (p = 0.001) and Stroop interference effect (p < 0.001) compared to high frequency stimulation. However, no significant differences among stimulation states were found for other cognitive tests. Here we show, low frequency STN-DBS improved conflict resolution of executive function compared to high frequency. Our results demonstrated the possibility of expanding the treatment coverage of DBS to cognitive function in PIGD, which will facilitate integration of low frequency stimulation into future DBS programming.

11.
Sci Data ; 10(1): 605, 2023 09 09.
Article in English | MEDLINE | ID: mdl-37689767

ABSTRACT

The colored calla lily is an ornamental floral plant native to southern Africa, belonging to the Zantedeschia genus of the Araceae family. We generated a high-quality chromosome-level genome of the colored calla lily, with a size of 1,154 Mb and a contig N50 of 42 Mb. We anchored 98.5% of the contigs (1,137 Mb) into 16 pseudo-chromosomes, and identified 60.18% of the sequences (694 Mb) as repetitive sequences. Functional annotations were assigned to 95.1% of the predicted protein-coding genes (36,165). Additionally, we annotated 469 miRNAs, 1,652 tRNAs, 10,033 rRNAs, and 1,677 snRNAs. Furthermore, Gypsy-type LTR retrotransposons insertions in the genome are the primary factor causing significant genome size variation in Araceae species. This high-quality genome assembly provides valuable resources for understanding genome size differences within the Araceae family and advancing genomic research on colored calla lily.


Subject(s)
Genome, Plant , Zantedeschia , Africa, Southern , Araceae , Chromosomes , Zantedeschia/genetics
12.
Med Phys ; 50(10): 6479-6489, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37696263

ABSTRACT

BACKGROUND: Adaptive radiotherapy (ART) can incorporate anatomical variations in a reoptimized treatment plan for fractionated radiotherapy. An automatic solution to objectively determine whether ART should be performed immediately after the daily image acquisition is highly desirable. PURPOSE: We investigate a quantitative criterion for whether ART should be performed in prostate cancer radiotherapy by synthesizing pseudo-CT (sCT) images and evaluating dosimetric impact on treatment planning using deep learning approaches. METHOD AND MATERIALS: Planning CT (pCT) and daily cone-beam CT (CBCT) data sets of 74 patients are used to train (60 patients) and evaluate (14 patients) a cycle adversarial generative network (CycleGAN) that performs the task of synthesizing high-quality sCT from daily CBCT. Automatic delineation (AD) of the bladder is performed on the sCT using the U-net. The combination of sCT and AD allows us to perform dose calculations based on the up-to-date bladder anatomy to determine whether the original treatment plan (ori-plan) is still applicable. For positive cases that the patients' anatomical changes and the associated dose calculations warrant re-planning, we made rapid plan revisions (re-plan) based on the ori-plan. RESULTS: The mean absolute error within the region-of-interests (i.e., body, bladder, fat, muscle) between the sCT and pCT are 41.2, 25.1, 26.5, and 29.0HU, respectively. Taking the calculated results of pCT doses as the standard, for PTV, the gamma passing rates of sCT doses at 1 mm/1%, 2 mm/2% are 87.92%, 98.78%, respectively. The Dice coefficients of the AD-contours are 0.93 on pCT and 0.91 on sCT. According to the result of dose calculation, we found when the bladder volume underwent a substantial change (79.7%), the bladder dose is still within the safe limit, suggesting it is insufficient to solely use the bladder volume change as a criterion to determine whether adaptive treatment needs to be done. After AD-contours of the bladder using sCT, there are two cases whose bladder dose D mean > 4000 cGy ${{\mathrm{D}}}_{{\mathrm{mean}}} > 4000{\mathrm{\ cGy}}$ . For the two cases, we perform re-planning to reduce the bladder dose to D mean = 3841 cGy ${{\mathrm{D}}}_{{\mathrm{mean}}} = 3841{\mathrm{\ cGy}}$ , D mean = 3580 cGy ${{\mathrm{D}}}_{{\mathrm{mean}}} = 3580{\mathrm{\ cGy\ }}$ under the condition that the PTV meets the prescribed dose. CONCLUSION: We provide a dose accurate adaptive workflow for prostate cancer patients by using deep learning approaches, and implement ART that adapts to bladder dose. Of note, the specific replanning criterion for whether ART needs to be performed can adapt to different centers' choices based on their experience and daily observations.

13.
Brain Commun ; 5(5): fcad238, 2023.
Article in English | MEDLINE | ID: mdl-37701817

ABSTRACT

Freezing of gait is a common and debilitating symptom in Parkinson's disease. Although high-frequency subthalamic deep brain stimulation is an effective treatment for Parkinson's disease, post-operative freezing of gait severity has been reported to alleviate, deteriorate or remain constant. We conducted this study to explore the optimal stimulation sites and related connectivity networks for high-frequency subthalamic deep brain stimulation treating freezing of gait in Parkinson's disease. A total of 76 Parkinson's disease patients with freezing of gait who underwent bilateral high-frequency subthalamic stimulation were retrospectively included. The volumes of tissue activated were estimated based on individual electrode reconstruction. The optimal and sour stimulation sites were calculated at coordinate/voxel/mapping level and mapped to anatomical space based on patient-specific images and stimulation settings. The structural and functional predictive connectivity networks for the change of the post-operative Freezing of Gait-Questionnaire were also identified based on normative connectomes derived from the Parkinson's Progression Marker Initiative database. Leave-one-out cross-validation model validated the above results, and the model remained significant after including covariates. The dorsolateral two-thirds of the subthalamic nucleus was identified as the optimal stimulation site, while the ventrocentral portion of the right subthalamic nucleus and internal capsule surrounding the left central subthalamic nucleus were considered as the sour stimulation sites. Modulation of the fibre tracts connecting to the supplementary motor area, pre-supplementary motor area and pedunculopontine nucleus accounted for the alleviation of freezing of gait, whereas tracts connecting to medial and ventrolateral prefrontal cortices contributed to the deterioration of freezing of gait. The optimal/sour stimulation sites and structural/functional predictive connectivity networks for high-frequency subthalamic deep brain stimulation treating freezing of gait are identified and validated through sizable Parkinson's disease patients in this study. With the growing understanding of stimulation sites and related networks, individualized deep brain stimulation treatment with directional leads will become an optimal choice for Parkinson's disease patients with freezing of gait in the future.

14.
Vaccine ; 41(40): 5825-5833, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37580210

ABSTRACT

BACKGROUND: The global burden of disease caused by congenital cytomegalovirus (CMV) infection is high. Previous modeling studies have suggested that CMV vaccination may be cost-effective in developed countries. Congenital CMV infection is more likely driven by maternal non-primary infection in China. We aimed to measure the effectiveness and cost-effectiveness of population-level CMV vaccination in Chinese females. METHODS: A decision tree Markov model was developed to simulate potential CMV vaccination strategies in a multi-cohort setting, with a population size of 1,000,000 each for the infant, adolescent (10-year-old) and young adult (20-year-old) cohorts. The hypothetical vaccines were assumed to have 50% efficacy, 20 years of protection, 70% coverage, at a price of US$120/dose for base-case analysis. Costs and disability-adjusted life years (DALYs) were discounted by 3% per year and the vaccination would be considered cost-effective if an incremental cost-effectiveness ratio (ICER) was lower than 2021 Chinese per capita GDP (US$12,500). FINDINGS: For the pre-infection (PRI) vaccine efficacy type, the adolescent strategy was the most cost-effective, with an ICER of US$12,213 (12,134 to 12,291) pre DALY averted, compared with the next best strategy (young adult strategy). For pre- and post-infection (P&PI) efficacy type, the young adult strategy was the most cost-effective as it was cost-saving. In one-way analysis varying the PRI vaccine price, the infant strategy, adolescent strategy and the young adult strategy would be a dominant strategy over others if the vaccine cost ≤US$60, US$61-121 and US$122-251 per dose respectively. In contrast, the young adult strategy continued to be the preferred strategy until the P&PI vaccine price exceeded US$226/dose. Our main results were robust under a wide variety of sensitivity analyses and scenario analyses. INTERPRETATION: CMV vaccination for females would be cost-effective and even cost-saving in China. Our findings had public health implications for control of CMV diseases.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Infant , Female , Adolescent , Young Adult , Humans , Child , Adult , Cost-Benefit Analysis , Vaccination/methods , Cytomegalovirus Infections/prevention & control , China
15.
Aesthetic Plast Surg ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580565

ABSTRACT

BACKGROUND: Rhinoplasty is one of the most challenging plastic surgeries because it lacks a uniform standard for preoperative design or implementation. For a long time, rhinoplasties were done without an accurate consensus of aesthetic design between surgeons and patients before surgery and consequently brought unsatisfactory appearance for patients. In recent years, three-dimensional (3D) simulation has been used to visualize the preoperative design of rhinoplasty, and good results have been achieved. However, it still relied on individual aesthetics and experience. The preoperative design remained a huge challenge for inexperienced surgeons and could be time-consuming to perform manually. Therefore, we adopted artificial intelligence (AI) in this work to provide a new idea for automated and efficient preoperative nasal contour design. METHODS: We collected a dataset of 3D facial images from 209 patients. For each patient, both the original face and the manually designed face using 3D simulation software were included. The 3D images were transformed into point clouds, based on which we used the modified FoldingNet model for deep neural network training (by pytorch 1.12). RESULTS: The trained AI model gained the ability to perform aesthetic design automatically and achieved similar results to manual design. We analysed the 1027 facial features captured by the AI model and concluded two of its possible cognitive modes. One is to resemble the human aesthetic considerations while the other is to fulfil the given task in a special way of the machine. CONCLUSION: We presented the first AI model for automated preoperative 3D simulation of rhinoplasty in this study. It provided a new idea for the automated, individual and efficient preoperative design, which was expected to bring a new paradigm for rhinoplasty and even the whole field of plastic surgery. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

16.
Article in English | MEDLINE | ID: mdl-37282571

ABSTRACT

Background The management of diabetes-related risk factors could effectively reduce the occurrence of its complications, improve the quality of life of patients, and reduce the mortality of patients. Data analysis based on the eKTANG platform could greatly improve the efficiency of communication between patients and doctors, and strengthen the treatment and management of diabetes. Aim We created eKTANG to monitor patient health effectively. The eKTANG health management system aims to extensively intervene in blood glucose monitoring, nutrition, exercise, medicine, and health education to enable diabetes patients to achieve optimal treatment results. Methods Diabetes patients diagnosed by Henan University Medical School included through the eKTANG platform were randomly divided into three groups: member service package group, discharge/outpatient follow-up group, and out-of-hospital care group. We conducted intensive out-of-hospital interventions for three groups of patients for three months to help patients formulate precise blood glucose control plans and conduct training. The traditional group was compared with the eKTANG platform group, and the physiological indicators and patient compliance of the four groups were observed 6 months later. Results In the eKTANG platform management group, the average blood glucose compliance rate increased significantly, and the percentage of average blood glucose in the range of 3.9-10.0 showed an upward trend. Fasting blood glucose and postprandial blood glucose showed a downward trend. At the same time, the number of patients per capita blood glucose monitoring showed a significant increase compared with the control group. Conclusion The establishment of the eKTANG platform can improve the efficiency of patient's medical treatment, improve their lifestyles, reduce the incidence of patient complications, and build a virtuous circle gradually. This research has strengthened the health management and autonomy of diabetic patients and improved the efficiency of treatment. It is worthy of promotion.

17.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2387-2395, 2023 May.
Article in Chinese | MEDLINE | ID: mdl-37282868

ABSTRACT

As a traditional Chinese herb and functional food, the fruits of Lycium barbarum has been widely used for thousands of years in China. L. barbarum polysaccharides(LBPs) are predominant active components, which have immunomodulatory, antioxidant, hypoglycemic, neuroprotective, anti-tumor, and prebiotic activities. The molecular weight, monosaccharide composition, glycosidic bond, branching degree, protein content, chemical modification, and spatial structure of LBPs are closely related to their biological activity. Based on the previous studies of this research team, this paper systematically combed and integrated the research progress of structure, function, and structure-activity relationship of LBPs. At the same time, some problems restricting the clarification of the structure-activity relationship of LBPs were considered and prospected, hoping to provide references for the high value utilization of LBPs and in-depth exploration of their health value.


Subject(s)
Antineoplastic Agents , Drugs, Chinese Herbal , Lycium , Lycium/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Structure-Activity Relationship , Antioxidants/pharmacology , Polysaccharides/pharmacology , Polysaccharides/chemistry
18.
Neurobiol Dis ; 182: 106143, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37146835

ABSTRACT

BACKGROUND: Sleep disturbances are highly prevalent in movement disorders, potentially due to the malfunctioning of basal ganglia structures. Pallidal deep brain stimulation (DBS) has been widely used for multiple movement disorders and been reported to improve sleep. We aimed to investigate the oscillatory pattern of pallidum during sleep and explore whether pallidal activities can be utilized to differentiate sleep stages, which could pave the way for sleep-aware adaptive DBS. METHODS: We directly recorded over 500 h of pallidal local field potentials during sleep from 39 subjects with movement disorders (20 dystonia, 8 Huntington's disease, and 11 Parkinson's disease). Pallidal spectrum and cortical-pallidal coherence were computed and compared across sleep stages. Machine learning approaches were utilized to build sleep decoders for different diseases to classify sleep stages through pallidal oscillatory features. Decoding accuracy was further associated with the spatial localization of the pallidum. RESULTS: Pallidal power spectra and cortical-pallidal coherence were significantly modulated by sleep-stage transitions in three movement disorders. Differences in sleep-related activities between diseases were identified in non-rapid eye movement (NREM) and REM sleep. Machine learning models using pallidal oscillatory features can decode sleep-wake states with over 90% accuracy. Decoding accuracies were higher in recording sites within the internus-pallidum than the external-pallidum, and can be precited using structural (P < 0.0001) and functional (P < 0.0001) whole-brain neuroimaging connectomics. CONCLUSION: Our findings revealed strong sleep-stage dependent distinctions in pallidal oscillations in multiple movement disorders. Pallidal oscillatory features were sufficient for sleep stage decoding. These data may facilitate the development of adaptive DBS systems targeting sleep problems that have broad translational prospects.


Subject(s)
Deep Brain Stimulation , Dystonia , Dystonic Disorders , Parkinson Disease , Humans , Globus Pallidus , Parkinson Disease/complications , Parkinson Disease/therapy , Deep Brain Stimulation/methods , Sleep
19.
Ther Adv Neurol Disord ; 16: 17562864231161163, 2023.
Article in English | MEDLINE | ID: mdl-37200769

ABSTRACT

Background: Subthalamic nucleus deep brain stimulation (STN-DBS) improves sleep qualities in Parkinson's disease (PD) patients; however, it remains elusive whether STN-DBS improves sleep by directly influencing the sleep circuit or alleviates other cardinal symptoms such as motor functions, other confounding factors including stimulation intensity may also involve. Studying the effect of microlesion effect (MLE) on sleep after STN-DBS electrode implantation may address this issue. Objective: To examine the influence of MLE on sleep quality and related factors in PD, as well as the effects of regional and lateral specific correlations with sleep outcomes after STN-DBS electrode implantation. Study Design: Case-control study; Level of evidence, 3. Data Sources and Methods: In 78 PD patients who underwent bilateral STN-DBS surgery in our center, we compared the sleep qualities, motor performances, anti-Parkinsonian drug dosage, and emotional conditions at preoperative baseline and postoperative 1-month follow-up. We determined the related factors of sleep outcomes and visualized the electrodes position, simulated the MLE-engendered volume of tissue lesioned (VTL), and investigated sleep-related sweet/sour spots and laterality in STN. Results: MLE improves sleep quality with Pittsburgh Sleep Quality Index (PSQI) by 13.36% and Parkinson's Disease Sleep Scale-2 (PDSS-2) by 17.95%. Motor (P = 0.014) and emotional (P = 0.001) improvements were both positively correlated with sleep improvements. However, MLE in STN associative subregions, as an independent factor, may cause sleep deterioration (r = 0.348, P = 0.002), and only the left STN showed significance (r = 0.327, P = 0.004). Sweet spot analysis also indicated part of the left STN associative subregion is the sour spot indicative of sleep deterioration. Conclusion: The MLE of STN-DBS can overall improve sleep quality in PD patients, with a positive correlation between motor and emotional improvements. However, independent of all other factors, the MLE in the STN associative subregion, particularly the left side, may cause sleep deterioration.

20.
J Parkinsons Dis ; 13(4): 453-471, 2023.
Article in English | MEDLINE | ID: mdl-37182899

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease with a heavy burden on patients, families, and society. Deep brain stimulation (DBS) can improve the symptoms of PD patients for whom medication is insufficient. However, current open-loop uninterrupted conventional DBS (cDBS) has inherent limitations, such as adverse effects, rapid battery consumption, and a need for frequent parameter adjustment. To overcome these shortcomings, adaptive DBS (aDBS) was proposed to provide responsive optimized stimulation for PD. This topic has attracted scientific interest, and a growing body of preclinical and clinical evidence has shown its benefits. However, both achievements and challenges have emerged in this novel field. To date, only limited reviews comprehensively analyzed the full framework and procedures for aDBS implementation. Herein, we review current preclinical and clinical data on aDBS for PD to discuss the full procedures for its achievement and to provide future perspectives on this treatment.


Subject(s)
Deep Brain Stimulation , Drug-Related Side Effects and Adverse Reactions , Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/therapy , Parkinson Disease/diagnosis , Deep Brain Stimulation/methods , Drug-Related Side Effects and Adverse Reactions/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...